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Abstract—Laminar film condensation of a saturated vapor flowing over a horizontal melting surface
is studied analytically. Using an approximate treatment of the shear stress at the vapor-liquid interface
(as suggested by Shekriladze and Gomelauri), the similarity conservation equations are solved numerically.
Solutions for the condensation rate, melting rate and skin friction are obtained for three values of the
liquid Prandtl number (0.1, I and 10) and for a wide range of condensation and melting parameters
(Stefan numbers). The solutions become exact as the parameter [(pp)/(p.u,)]'/* goes to infinity. Simple
analytical solutions based on a thin-film approximation are also derived and compared with the numerical
results.

NOMENCLATURE
<, specific heat; _
F, dimensionless stream function; equation (2);
k, thermal conductivity;
L;, heat of fusion;
L,, heat of vaporization;
mg,  local melting rate per unit area;
m,, local condensation rate per unit area;
Ny,  condensation parameter, (T, — Tpp)/Lo»
equation (23);
N,, melting parameter,

C(R_ Tmp)/[Lf+ Cs(Tmp - 72))]’ equation (1 S)s
Pr,  liquid Prandtl number, cu/k;
film Reynolds number, 46{u)p/u;
Reynolds number, u,, x/v;
T, temperature;

u, velocity component in x-direction;

{u), average film velocity in x-direction;

u,, free stream velocity of vapor;

v, velocity component in y-direction;

X, coordinate measuring distance along the
melting surface from the leading edge;

» coordinate measuring distance normal to the

melting surface.

Greek symbols

o, liquid film thickness;

n, similarity variable; equation (1);

s,  dimensionless liquid film thickness;

0, dimensionless temperature;
(T- Tmp)/(n— Tmp); equation (3)9

U absolute viscosity;

v, kinematic viscosity;

0, density;

v, stream function;

Tw, shear stress at the melting surface.

Subscripts

mp, melting point;

0, condition in the solid far from the melting
surface;

s, solid;

v, vapor.
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1. INTRODUCTION

WHEN a condensing vapor comes into contact with a
solid surface, the surface may melt while the vapor
condenses on it. Such simultaneous condensation and
melting will occur when the vapor temperature is higher
than the melting point of the solid. This problem is
complicated by the fact that the liquid film is formed
by both condensation of the vapor and melting of the
solid. In fact, more liquid comes from melting than
condensation because the heat of fusion is considerably
less than the heat of vaporization. The problem has
considerable practical significance in certain engineer-
ing applications. For example, in the freeze-desali-
nation process, ice is melted by condensing a refrigerant
vapor onto the ice surface [1]. Steam jets are used in
some applications to remove or drill through high ice-
content soils [2]. Also, the melting attack of structural
materials by metal vapors or ceramic fuel vapors is of
interest in safety studies of fast breeder nuclear reactors
[3]

Laminar film condensation of a pure vapor onto a
vertical melting surface, where the liquid flow is
generated by gravity forces, was first analyzed by Tien
and Yen [4]. Later, Yen et al. [ 5] extended the analysis
to examine the effect of noncondensable gases on the
condensation-melting heat transfer. In both studies, it
was assumed that the condensing vapor and the melting
solid are of the same material and that the Prandtl
number of the material is much greater than unity.
Recently, Epstein and Cho performed an analysis [6]
which allows for the possibility that the condensing
vapor and the melting solid are of different materials
of immiscible liquids and accounts for the effects of
both liquid film inertia and shear at the interface
between the condensing vapor and liquid film.

In the studies mentioned above, the velocity of the
condensing vapor was taken to be zero so that gravity
was the only force removing the liquid layers formed
by condensation and melting. As a first step toward
examining the effect of the vapor velocity, this paper
considers laminar film condensation of a saturated
vapor flowing over a horizontal melting surface. The
mathematical formulation of the problem is similar to
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the boundary-layer analysis developed by Koh [7] for
laminar-film condensation in forced flow over a flat
plate, except that we allow for mass addition at the
solid surface due to melting. Following the treatment
suggested by Shekriladze and Gomelauri [8], the shear
stress at the vapor-liquid interface was approximated
by the momentum given up by the condensing vapor.
Using a marching integration technique (trial-and-
error method), the resulting similarity equations were
solved numerically for one-component systems in

+ Iid are
which the condensing vapor and the melting solid are

of the same material. Solutions were obtained for three
values of the liquid Prandtl number (Pr = 0.1, 1, 10)
with a wide range of condensation and melting
parameters. The numerical (exact) results were com-
pared with simple analytical solutions based on a thin-
film approximation.
2. ANALYSIS

Physical model

A schematic diagram of the physical model and
coordinate system is presented in Fig. 1.
pure vapor at a velocity u,, is flowing over a horizontal
melting surface. The vapor is saturated at temperature
T.. The temperature at the melting surface corresponds
to the melting point of the solid T,,, while the tem-
perature of the solid far from the melting surface is
maintained at To(To < Tp,). It is assumed that in steady
state, the liquids from melting and condensation flow
side by side as a smooth (laminar) composite film. At
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FI1G. 1. Physical model and coordinate
system.

the melting surface, the liquid velocity in the direction
of vapor flow is zero. Away from the melting surface,
the liquid film moves under the influence of drag forces
due to the vapor flow. The heat released from vapor
condensation is divided among energy convection by
the moving liquid film, melting of the solid, and heat
conduction into the solid. The coordinate system is
fixed to the melting surface, so the solid material
appears to be moving toward the film with a mass flux
corresponding to the melting rate. While the melting
rate is a function of x, it is assumed here that the
geometry change of the melting surface can be
neglected.* In addition, as is usual in simple conden-
sation theory, we neglect effects related to liquid—film
surface instabilities. Finally, physical properties that
appear in the governing equations are considered to
be constant.

*The validity of this assumption is discussed in [6].

Governing equations

The basic governing partial differential equations for
the liquid film have been given elsewhere (see, for
example [9]) and need not be repeated here. The partial
differential equations can be transformed into a corre-
sponding set of ordinary differential equations, using
the following similarity transformation:

_ /(&
n }\/ \\’X) (1)

¥ = Ftoux) @
T-T,
f=__"7° 3)
T;v_ Tmp
0
u= Al/l =u, F'(n) “
oy
d [(vu,,
) O ST

The momentum and energy equations for the liquid
film then become, respectively,

F"+3FF" =0 6)
0" +3PrFO =0 )
where the prime denotes differentiation with respect
to #.
The boundary conditions at the melting surface
(y = 0) are:

aty=0, u=0 (8)
T = Ty 9)

oT
k(: > Lypo+cTop—To)pv.  (10)

cy

Since our coordinate system is fixed to the melting
surface, the solid material appears to be moving toward
the liquid film at the local melting rate, which is

gtven by
= po(y =0). (11)

Equation (10) states that the heat conducted to the
melting surface is equal to the heat of melting plus the
sensible heat required to raise the solid temperature
to the melting point. In terms of the transformed
variables, equations (8)—(10) become

atn =0 F =0 (12)
=0 (13)
N0 +4PrF =0 (14)
where N, is the melting parameter defined by
N, o T Ty 15

LitcdTmp—To)’

The boundary conditions at the condensing surface
(v = o) are:
Ju

aty=20, v o (U —uq)(—r/p) (16)
iy

T=T. (n

k—Z—L ITin (18)
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where m, is the vapor condensation rate per unit area
and is given by

o dé
iy = —p{v—u o -

In terms of the transformed variables, equations (16)—
(18) become

(19)

atn =n;, F'+3FF—3F=0 (20)
9=1 @1
Ni§ —4PrF=0 22)
where N, is the condensation parameter defined by
’I;, - Tm
N, = 5(__11__"_). (23)

Equation (16) states that the shear force at the vapor—
liquid interface is equal to the momentum given up by
the condensing vapor. This shear condition is an ap-
proximation proposed by Shekriladze and Gomelauri
[8]. It corresponds to an asymptotic solution of the’
vapor momentum boundary-layer equation in the limit
of strong suction. Exact treatment of the interfacial
shear would require simultaneous consideration of
both liquid and vapor boundary layers, as was done
by Koh [7]. The shear approximation has been used
by a number of investigators [10,11]. In particular,
the accuracy of the shear approximation has been
investigated by Denny and Mills for the case of com-
bined gravity and forced flow [10]. Denny and Mills
have found that for the range of variables considered
in their investigation, the error in the heat transfer
introduced by the shear approximation is less than

19 for
()
Prlls Vy

where p, and v, are the vapor density and kinematic
viscosity, respectively. The criterion may be rewritten as

1/2 .. . Uor 172
e
Pollv Pump \ YV

or, in terms of the transformed variables, it takes

the form
1/2 N
("“) Lo, > 2
Polto Pr

where pu, is the vapor viscosity. A similar conclusion
may be obtained from Cess’s analysis of laminar film
condensation in a forced flow over a flat plate [9]. This
analysis, which neglected inertia forces and energy
convection, indicates that the shear approximation
is valid for [(pw)/psits)]V*(Ny/Pr)>»1 (say, for
[(pu)/(pops)]**(N1/Pr) > 4; see Fig. 3 of [9]). Thus it
would be expected that the shear approximation would
be reasonable for most engineering applications in-
volving high condensation rates.

The governing equations (6)—(7) combined with the
boundary conditions (12)-(14) and (20)-(22) suffice to
provide solutions as function of three physical par-
ameters Ny, N, and Pr. Once the governing equations

(24)

(25)

(26)

are solved, the local condensation rate, melting rate,
and skin friction can be computed as follows.

Dimensionless condensation rate

fl,, N F
T (Regtr = Mgy =T )
Pl Pr 2
Dimensionless melting rate
s N F(©
™ (Reg? = X2poy= -ED )
PU Pr 2
Dimensionless skin friction
2 (Re)"? = F'(0) 29)

pux

where Re, = xu./vand 1, = u(0u/Cy),=o. The average
condensation and melting rates over a distance x are
equal to twice the corresponding local values at x.

Method of solution

A trial-and-error marching integration technique
was employed. Numerical integration was performed
using a library program available at the Applied
Mathematics Division of Argonne National Labora-
tory (based on the Gear method [12]). For a given
Prandtl number, the solution procedure was as follows.
First, solve the momentum equation (6) with assumed
values for F(0) and F”(0) and determine those solutions
which satisfy the shear stress condition at #;, equation
(20) (15 need not be specified, however). Second, solve
the energy equation (7) with these momentum solutions
and compute N, and N, using equations (14) and (22),
respectively. Third, select those solutions which give
desired values of Ny and N, within an error bound
of 2%.

Thin-film approximation

Before we discuss the numerical solutions, it seems
useful to consider the case when the inertia forces and
energy convection effects may be neglected. In this case,
solution of the momentum and energy equations gives
linear velocity and temperature profiles in the liquid
film. The appropriate film thickness and coefficients
are determined using the boundary conditions (12)—(14)
and (20)-(22). It can then be shown that the local
condensation rate, melting rate, and skin friction are
given as follows.

Dimenstonless condensation rate
T Ny/Pr

pu a1y (1 M) “
Pr Nl
Dimensionless melting rate
g N,/Pr
(Re)'? = v~y G
Plleo 21+ 28) (1422
Pr Ny
Dimensionless skin friction
Ty N/(Pr+Ny)
— (Rey)V? = N‘ o ‘N - (32
Pz 21+24) (14522
Pr NI
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The dimensionless heat flux at the melting wall is

given by
i
1\]1 12 ]\]2 1/2°
21 14— 1+-—
( +Pr> ( +N1

It is easy to see that in the absence of melting (N, = 0),
equation (33) reduces to Shekriladze and Gomelauri’s
solution for pure condensation (equation (8) of [8])
and checks with Cess’s limiting solution for
[ow/p. )] *(N1/Pr) » | when N, « | (equation (27)
of [9]).

Another thin-film approximation is also possible,
although its practical usefulness is limited. Cess’s
analysis [9] indicates that the interfacial shear may be
approximated by the dry friction, ie. friction over a
solid surface without condensation, when

Lpw/(po )] 2(N1/Pr)

is of the order of 0.1 or less. In this case, the dimen-
sionless skin friction is given by F"(0) = F"(y;) = 0.332
[(eouo)/(pw)]*%. Using this shear condition along with
the boundary conditions (12)—(14) and (21)}~(22), it can
be shown that the dimensionless heat flux is given by

0(0) = 0'(n,)

e o
VRV RS —N—Z) 9

where a=0.166 [(p.u,)/(pw)]"?. In the absence of
melting (N, = 0), equation {34) reduces to Cess’s limit-
ing solution for [(pu)/(pep)]V*(N1/Pr) «1 (equation
(26) of [9]). Using equation (34), the local condensation
and melting rate may be obtained from equations (27)
and (28).

It may be noted that the thin-film approximation
can be easily extended to derive simple analytical
solutions for the case where the condensing vapor and
the melting solid are of different materials of immiscible
liquids [13].

70) = (33)

3. RESULTS AND DISCUSSION

To examine the accuracy of the shear approximation
used in the present study, calculations have been per-
formed for the case of no melting (N, = 0). Figure 2
compares the results with Koh’s exact solutions [7]*
for [(pw)/(p.u,)]'* =300, which are indicated by
broken curves. The dimensionless wall heat flux, §'(0),
is plotted against the condensation parameter N;. As
would be expected from the criterion given by (26),
our solutions are very close to Koh's solutions for
N/Pr = (T, — T,,)/(PrL,) > 0.01. For Pr =1 and 10,

*Figure 7(b) of [ 7] appears to contain some mislabeling.
The curves for [(pu)/(p,p)]"* = 100 should have been for
[{ew/p. 1) ]H? = 500 and vice versa.

tAs has been noted by Sparrow e al. [ 14], realistic values
of the parameter [(pp)/(pop,)]'? range from 200 to 2000 for
typical condensation processes at atmospheric pressure.
Obviously, the shear approximation given by equation (16)
becomes more accurate as the value of this parameter in-
creases. In fact, it is exact when the parameter is infinitely
large.
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F1G. 2. Heat flux at the wall in the absence of melting; the
present solutions (solid curves) are compared with Koh'’s
exact solutions for [(pu)/(p,u,)]''? = 500 {broken curves).

however, our solutions tend to deviate somewhat from
Koh’ssolutions as N;/Pr becomes large. This deviation
for high Prandtl numbers is not understood. For
Pr = 0.03, it is not possible to distinguish our solutions
from Koh’s solutions as given in Fig. 7(a) of [7].
Therefore, it would appear that unless the Prandt!
number is very large, the shear approximation given
by equation (16) is reasonable for many realistic values
of the condensation parameter.

The calculational results for simultaneous conden-
sation and melting are presented in Figs. 3-11.
Figures 3-5 show the local condensation rate as a
function of the condensation parameter N; with the
melting parameter N, as parameter for Pr=0.1, I,
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F1G. 3. Local condensation rates for Pr = 0.1 (broken
curves indicate the thin-film approximation).
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F1G. 4. Local condensation rates for Pr = 1.0 (broken
curves indicate the thin-film approximation).
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F16. 5. Local condensation rates for Pr = 10 (broken
curves indicate the thin-film approximation).

and 10. Similarly, the local melting rates are given in
Figs. 6-8 and the skin friction in Figs. 9-11. Also
shown for comparison purposes are solutions based on
the thin-film approximation corresponding to equa-
tions (30)-(32). The thin-film solutions are indicated by
broken curves.

Turning first to Figs. 3--3, we find that the conden-
sation rates decrease as the melting parameter N,
increases. This would be expected, since melting in-
creases the liquid film thickness, thereby reducing the
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F16. 6. Local melting rates for Pr = 0.1 ibroken
curves indicate the thin-film approximationi.
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F1G. 7. Local melting rates for Pr = 1.0 tbroken
curves indicate the thin-film approximation:

temperature driving force for condensation. For a given
melting parameter, the condensation rates increase with
increasing condensation parameter N;. This trend is
not different from that for condensation without melt-
ing and requires no further explanations. For Pr = 0.1,
the thin-film approximation appears to be reasonably
good in estimating the condensation rates for a wide
range of the melting parameter. For high Prandtl
numbers, the effect of N; on the condensation rates
appears to be somewhat reduced, and the thin-film
approximation underestimates the condensation rates
when the melting parameter is large. This behavior
seems to be related to the blowing effect produced by
melting. When viewed from our coordinate system,
melting produces a normal velocity at the melting
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F1G. 8. Local melting rates for Pr = 10 (broken
curves indicate the thin-film approximation).
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F16. 9. Local skin friction for Pr = 0.1 (broken
curves indicate the thin-film approximation).

surface. The melting velocity acts to reduce the steep-
ness of the temperature gradient at the melting surface
in a way similar to the blowing process in a boundary-
layer flow [15,16]. As a result, the melting rates will be
reduced below the thin-film prediction, as will be seen
later. It appears, however, that for Pr =1 and 10, the
blowing velocity increases the steepness of the tem-
perature gradient at the condensing surface, thereby
providing a larger driving force for condensation than
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F1G. 10. Local skin friction for Pr = 1.0 (broken
curves indicate the thin-film approximation).
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Fi6. 11. Local skin friction for Pr = 10 (broken
curves indicate the thin-film approximation).

predicted by the thin-film approximation. For Pr = 0.1,
inertia effects are also very important, and it may thus
be fortuitous that the thin-film approximation predicts
the condensation rates reasonably well.

We now turn to the melting rates as shown in Figs.
6-8. Unless the melting parameter N, is very small,
the melting rates generally increase with increasing
condensation parameter N;. This behavior differs from
that observed for gravity-flow condensation and melt-
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ing [6]. This is related to two competing effects. For
a given N,, increasing Ny tends to increase the film
thickness because of the increased condensation rates.
On the other hand, the liquid film moves faster, since
the shear force at the liquid—vapor interface increases
withincreasing condensation rate and thus its thickness
tends to decrease. When N, is much greater than N,
the latter effect is large enough to dominate. For
N, « Ny, the former effect is more important and the
melting rates may be estimated using heat-flux values
for the case of no melting. It is seen that for Ny =1
and 10, the thin-film approximation overestimates the
melting rates, the deviation increasing with increasing
melting parameter. For Pr=1 and 10, the deviation
is due mainly to the blowing effect at the melting
surface, However, the especially marked deviation for
Pr=0.1is related to the inertia of the melt layer as
well as the blowing effect. The inertia causes the melt
jayer to become thicker than predicted by the thin-film
approximation* and, coupled with the blowing effect,
greatly reduces the temperature gradient at the melting
surface. In fact, the inertia effects for Pr=0.1 are so
strong that the melting rates are seen to decrease
slightly as N is increased from 1 to 10. This somewhat
unexpected behavior would only be of academic
interest, because, as will be discussed later, the appli-
cability of the present laminar analysis is very limited
for this parameter range.

Figures 9-11 show the dimensionless skin friction
at the melting surface, F"(0), as a function of Ny with
N, as parameter. It is seen that the skin friction
increases with increasing condensation parameter N;.
This is expected, since the shear force that moves the
liquid film increases with increasing condensation rate.
The skin friction is found to decrease with increasing
melting parameter N,. As has been observed in Figs.
7 and 8, for Pr = 1 and 10, the melting velocity increases
with increasing melting parameter. Thus, the effect of
increasing N, on the skin friction is similar to the effect
of blowing in a forced-convection, boundary-layer flow
[15]. However, the dramatic decrease in skin friction
for Pr = (.1 largely represents the strong inertia effects
of the melt layer. (The results for N, = 10, which lie
outside the range of scale of Fig. 9, would be of little
practical interest.)

It should be noted that since L, > L+ (T, — To)
for most materials, the foregoing analytical results for
parameter values Ny > N, are of little practical sig-
nificance. More important, the results are valid only
when the film is moving in laminar flow with straight
streamlines. The nature of the flow changes with the
film Reynolds number, which is defined by Re; =
46<u> p/u where {u) is the average film velocity. For
water condensing on a vertical surface, waves appear
at Re; of about 30, and a transition to turbulent flow
occurs at Re, between 300 and 2000 [10]. Using these
values of Re,, we shall examine the region of validity

*Similar inertia effects occur in the melting of solid bodies
immersed in hot fluid flows when the Prandtl number is
low [17].
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of the present results. To do this, the film Reynolds
number has been derived based on the thin-film
approximation. It is given by

Nl Nl 1/2 N2 1/2
Re =4(Rex)”2(-——§(1+~—~) 1+2) .
4 \Pr+”’1/\ P?‘/ \ 1’\1’1/
3%

Consider, for example, saturated steam at atmospheric
pressure condensing on ice at its melting point. Using
N, =0.185 N, =125, and Pr =170, it is found that
Re; = 0.29(Re,)!'2. Thus, surface waves will appear on
the film when Re. = 1.1 x 10* and the flow becomes
turbulent when Re, = 1.1 x 10% ~ 48 x 107, For u,, =
10m/s {~30ft/s), surface waves will appear at x =
1.2mm and the transition to turbulent flow will occur
at x=012-48m. When values of N,/Pr and/or
N,/Pr are greater than unity, the applicability of the
present laminar analysis is quite limited. For the
meiting attack of steel structure by steel vapor {which
may occur in a core disruptive accident of liquid—metal-
cooled fast-breeder reactors), typical values of N;/Pr
and N,/Pr are 1 and 10, respectively. In this case, the
transition to turbulent flow occurs when Re, = 10* ~
4.5 x 10%, the corresponding value of x for u, = 10m/s
being somewhere between 0.1 and 4.5mm. These
values of x would be an underestimate, since the thin-
film approximation on which equation {35} is based
overestimates the melting rate for this case. The above
calculation, however, clearly indicates the limited appli-
cability of the present analysis when values of N,/Pr
and/or N,/Pr exceed unity. Strictly speaking, the
present analysis is considered to be valid when the
flow is laminar and no surface waves are present. The
presence of surface waves will cause an increase in
heat transfer. The present analytical results provide a
basis for the empirical correlation of the effects of
surface waves. In the absence of reliable analyses of
turbulence effects, the present results can even prove
to be useful in correlating heat-transfer data for tur-
bulent films. Unfortunately, no experimental data is
available for comparison with the present analytical
results. However, it may be mentioned in passing that
the melting heat-transfer coefficients which were
measured in experiments involving gravity-flow steam
condensation on a vertical ice plate in the presence of
air [5] and a melting ice sphere in a warm laminar
liquid flow [18], were found to be in good agreement
with theoretical predictions based on boundary-layer
analyses similar to the present analysis.
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CONDENSATION LAMINAIRE EN FILM D’'UNE VAPEUR SECOULANT
SUR UNE SURFACE HORIZONTALE EN FUSION

Resumé - On étudie par voie analytique la condensation laminaire en film d’une vapeur saturée balayant
une surface horizontale en fusion. Les équations de conservation formulées en similitude ont £t€ résolues
numériquement en utilisant un traitement approché de la tension de cisaillement de interface liquide~
vapeur (méthode suggérée par Shekriladze et Gomelauri). Le taux de condensation, les taux de fusion et
le frottement pariétal ont été obtenus pour trois valeurs du nombre de Prandtl du liquide (0,1-1 et 10)
et pour un domaine étendu de parametres de condensation et de fusion (nombres de Stefan). Les solutions
sont exactes lorsque le paramétre [(pu)/{p.u.)]''? tend vers infini. Des solutions analytiques simples
basées sur I'approximation du film mince ont également &té obtenues et comparées aux résultats
numériques.

LAMINARE FILMKONDENSATION STROMENDEN DAMPFES AUF
EINER HORIZONTALEN SCHMELZENDEN OBERFLACHE

Zusammenfassung — Die laminare Filmkondensation eines iiber eine horizontale schmelzende Oberflache
stromenden, gesattigten Dampfes wird analytisch untersucht. Unter Verwendung eines Naherungsansatzes
fur die Schubspannung an der Dampf-Fliussigkeits-Grenzflache (entsprechend dem Vorschlag von
Shekriladze und Gomelauri) werden die Erhaltungsgleichungen numerisch gelost. Fir drei Werte der
Flussigkeits-Prandtl-Zahl (0,1; 1 und 10) und fir einen weiten Bereich von Kondensations- und
Schmelzparametern {Stefan-Zahlen) werden Losungen fir die Kondensations- und Schmelzrate sowie
fiir die Oberflichenreibung angegeben. Die Losungen werden exakt, wenn Parameter [{(pu}/(p, un)]'"?
gegen unendlich geht. Aulerdem werden einfache analytische, auf einer Diinnschicht-Niherung beruhende
Losungen abgeleitet und mit den numerischen Werten verglichen,

JAMUWHAPHASA NMJEHOYHAS KOHAEHCALWSA NAPA, TEKYIIETO
O FMOPHM3OHTAJIBHOM IMNOBEPXHOCTH IJIABJIEHH S

AHHOTRUHS -—— AHaIUTHIECKH HCCIEAYETCH NAMUHAPHAA MIEHOMHAS KOHAEHCALMS HaChILCHHOTO
fapa, TeKYIIEro Mo rOPH30HTANLHOM HOBEPXHOCTH masnedud. C noMOuwbLIo NPpubIHKEHHOTO pel-
CTaB/leHHsl HATIPSDKEHHH COBMIa HAa MOBEPXHOCTH paijgena nap-»)HAKOCTh (npeanoxenuoi Ilexpu-
nanze u [omenaypu) pellajiMch YHCAEHHO aBTOMOAE/bHbIE YPABHEHUS COXpaHEeHUs. PelueHus s
CKOPOCTH KOHIACHCALMH, ILIABICHUS M TIOBEPXHOCTHOIO TPEHMA TOJIYHMEHBI JUIS TPEX 3HAUYEHHIT uncen
Mpasatns gus xagkocTy (0,1; | 1 10) u ¥pokoro auana3oHa NapaMeTpoB KOHAESHCAUME H TIIaBle-
aus (qucia Credana). PewieHus cTaHOBATCA TOYHbIMM, Koraa napamerp [(pu){p.p.)l!'?, crpemurcs
K BeckoneunocTd. C noMoubio npubnmKeHHs TOHKON TUTEHKH [IOYYeHbI NPOCTHIE aHATHTHYECKHE
PeLIeHHA, KOTOPbIE CPABHHBAIOTCS ¢ YUCACHHBIMH PE3Y/IbTATAMH,



