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Abstract-Laminar film condensation of a saturated vapor flowing over a horizontal melting surface 
is studied analytically. Using an approximate treatment of the shear stress at the vapor-liquid interface 
(as suggested by Shekriladze and Gomelauri), the similarity conservation equations are solved numerically. 
Solutions for the condensation rate, melting rate and skin friction are obtained for three values of the 
liquid Prandtl number (0.1, 1 and 10) and for a wide range of condensation and melting parameters 
(Stefan numbers). The solutions become exact as the parameter [(p~)/(p~,pJ1” goes to infinity. Simple 
analytical solutions based on a thin-film approximation are also derived and compared with the numerical 

results. 

NOMENCLATURE 

specific heat ; 
dimensionless stream function; equation (2); 
thermal conductivity; 
heat of fusion; 
heat of vaporization; 

local melting rate per unit area; 
local condensation rate per unit area; 
condensation parameter, c( T, - Tmp)/Lv, 
equation (23); 
melting parameter, 

c(T,- K&L,+ c,(T,, - To)], equation (15); 
liquid Prandtl number, cp/k; 
film Reynolds number, 46(u)p/p; 
Reynolds number, u, x/v; 
temperature; 
velocity component in x-direction; 
average film velocity in x-direction; 
free stream velocity of vapor; 
velocity component in y-direction; 

coordinate measuring distance along the 
melting surface from the leading edge; 

coordinate measuring distance normal to the 
melting surface. 

Greek symbols 

6, liquid film thickness; 

I> similarity variable; equation (1); 

?a9 dimensionless liquid film thickness; 

0, dimensionless temperature; 
(T- T,J/(T,,- Tmp); equation (3); 

K absolute viscosity; 

V, kinematic viscosity; 

P? density; 

$9 stream function; 

T&v> shear stress at the melting surface. 

Subscripts 

mp, melting point; 

0, condition in the solid far from the melting 
surface; 

& solid; 

0, vapor. 

1. INTRODUCTION 

WHEN a condensing vapor comes into contact with a 

solid surface, the surface may melt while the vapor 
condenses on it. Such simultaneous condensation and 

melting will occur when the vapor temperature is higher 
than the melting point of the solid. This problem is 
complicated by the fact that the liquid film is formed 
by both condensation of the vapor and melting of the 
solid. In fact, more liquid comes from melting than 

condensation because the heat of fusion is considerably 
less than the heat of vaporization. The problem has 
considerable practical significance in certain engineer- 
ing applications. For example, in the freeze-desali- 
nation process, ice is melted by condensing a refrigerant 
vapor onto the ice surface [l]. Steam jets are used in 

some applications to remove or drill through high ice- 
content soils [a]. Also, the melting attack of structural 
materials by metal vapors or ceramic fuel vapors is of 
interest in safety studies of fast breeder nuclear reactors 

r31. 
Laminar film condensation of a pure vapor onto a 

vertical melting surface, where the liquid flow is 

generated by gravity forces, was first analyzed by Tien 
and Yen [4]. Later, Yen et al. [S] extended the analysis 
to examine the effect of noncondensable gases on the 
condensation-melting heat transfer. In both studies, it 
was assumed that the condensing vapor and the melting 
solid are of the same material and that the Prandtl 
number of the material is much greater than unity. 
Recently, Epstein and Cho performed an analysis [6] 
which allows for the possibility that the condensing 
vapor and the melting solid are of different materials 
of immiscible liquids and accounts for the effects of 
both liquid film inertia and shear at the interface 
between the condensing vapor and liquid film. 

In the studies mentioned above, the velocity of the 
condensing vapor was taken to be zero so that gravity 
was the only force removing the liquid layers formed 

by condensation and melting. As a first step toward 
examining the effect of the vapor velocity, this paper 
considers laminar film condensation of a saturated 
vapor flowing over a horizontal melting surface. The 
mathematical formulation of the problem is similar to 

23 



24 D. H. CHO and M. EPSTEIN 

the boundary-layer analysis developed by Koh [7] for 
laminar-film condensation in forced flow over a flat 

plate, except that we allow for mass addition at the 
solid surface due to melting. Following the treatment 
suggested by Shekriladze and Gomelauri [8], the shear 
stress at the vapor-liquid interface was approximated 
by the momentum given up by the condensing vapor. 
Using a marching integration technique (trial-and- 
error method), the resulting similarity equations were 

solved numerically for one-component systems in 
which the condensing vapor and the melting solid are 
of the same material. Solutions were obtained for three 

values of the liquid Prandtl number (Pr = 0.1, 1, 10) 
with a wide range of condensation and melting 
parameters. The numerical (exact) results were com- 

pared with simple analytical solutions based on a thin- 
film approximation. 

2. ANALYSIS 

A schematic diagram of the physical model and 
coordinate system is presented in Fig. 1. A stream of 
pure vapor at a velocity u,, is flowing over a horizontal 
melting surface. The vapor is saturated at temperature 
7;.. The temperature at the melting surface corresponds 
to the melting point of the solid 7&, while the tem- 

perature of the solid far from the melting surface is 
maintained at TO( To < T&). It is assumed that in steady 
state, the liquids from melting and condensation flow 
side by side as a smooth (laminar) composite film. At 

urn - CONDENSATION . 
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FIG. 1, Physical model and coordinate 
system. 

the melting surface, the liquid velocity in the direction 
of vapor flow is zero. Away from the melting surface, 
the liquid film moves under the influence of drag forces 
due to the vapor flow. The heat released from vapor 

condensation is divided among energy convection by 
the moving liquid film, melting of the solid, and heat 
conduction into the solid. The coordinate system is 
fixed to the melting surface, so the solid material 
appears to be moving toward the film with a mass flux 
corresponding to the melting rate. While the melting 
rate is a function of .x, it is assumed here that the 
geometry change of the melting surface can be 
neglected.* In addition, as is usual in simple conden- 
sation theory, we neglect effects related to liquid-film 
surface instabilities. Finally, physical properties that 
appear in the governing equations are considered to 
be constant. 
___.~~ ~..~__~~ ~ - ~~ ~~ -- 

*The validity of this assumption is discussed in [6]. 

Governing equations 
The basic governing partial differential equations for 

the liquid film have been given elsewhere (see, for 
example [9]) and need not be repeated here. The partial 
differential equations can be transformed into a corre- 
sponding set of ordinary differential equations, using 

the following similarity transformation: 

(1) 

ti = F J(vu,x) (2) 

Tnp T- tl= 
T>- Tmp 

(3) 

Ll = 2 = u,,,F’(Y/) 
ii! 

(4) 

aJ 
I:= ___=j 

?.x 
(5) 

The momentum and energy equations for the liquid 
film then become, respectively, 

F”‘+ +FF” = 0 (6) 

O”+ $PrFH’ = 0 (7) 

where the prime denotes differentiation with respect 
to 8. 

The boundary conditions at the melting surface 
(y = 0) are: 

atr=O, u=O (8) 

T= Tmp (9) 

k g = Lrpr+c,(T,,-&)PL’. 
i ! (‘.l, 

(10) 

Since our coordinate system is fixed to the melting 

surface, the solid material appears to be moving toward 
the liquid film at the local melting rate, which is 
given by 

ti, = pr(V = 0). (11) 

Equation (10) states that the heat conducted to the 
melting surface is equal to the heat of melting plus the 
sensible heat required to raise the solid temperature 
to the melting point. In terms of the transformed 
variables, equations (8))( 10) become 

atq=O, F’=O (12) 

H=O (13) 

N2W+fPrF = 0 (14) 

where Nz is the melting parameter defined by 

N 

2 
= _G- Lp) 

Lf+c,(Tm,- To) ’ 

The boundary conditions at the condensing surface 
(_v = 6) are: 

at .r = S, \‘$ = (u-l&)(-r&/p) (16) 

T= 7;. (17) 

k !?I = L,.rh,. 
;, (18) 
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where ti, is the vapor condensation rate per unit area 

and is given by 

25 

(19) 

are solved, the local condensation rate, melting rate, 

and skin friction can be computed as follows. 

Dimensionless condensation rate 

In terms of the transformed variables, equations (16)) 
(18) become 

at v = na, F”+fFF’-fF = 0 (20) 

f3=1 (21) 

N18’-:PrF = 0 (22) 

where Ni is the condensation parameter defined by 

N 

1 
= c(T,-Tn,) 

L” 
(23) 

Equation (16) states that the shear force at the vapor- 
liquid interface is equal to the momentum given up by 
the condensing vapor. This shear condition is an ap- 
proximation proposed by Shekriladze and Gomelauri 
[8]. It corresponds to an asymptotic solution of the 

vapor momentum boundary-layer equation in the limit 
of strong suction. Exact treatment of the interfacial 
shear would require simultaneous consideration of 
both liquid and vapor boundary layers, as was done 

by Koh [7]. The shear approximation has been used 
by a number of investigators [lo, 111. In particular, 

the accuracy of the shear approximation has been 

investigated by Denny and Mills for the case of com- 
bined gravity and forced flow [lo]. Denny and Mills 
have found that for the range of variables considered 
in their investigation, the error in the heat transfer 
introduced by the shear approximation is less than 

1% for 

>2 (24) 

where pv and v, are the vapor density and kinematic 
viscosity, respectively. The criterion may be rewritten as 

(;;!‘125JyZ > 2 (25) 

or, in terms of the transformed variables, it takes 

the form 

“’ N1 
pr e’(r?&) > 2 (26) 

where pv is the vapor viscosity. A similar conclusion 
may be obtained from Cess’s analysis of laminar film 
condensation in a forced flow over a flat plate [9]. This 
analysis, which neglected inertia forces and energy 

convection, indicates that the shear approximation 

is valid for [(p.~)/(p~p,)]‘!~(N,/Pr) >> 1 (say, for 
[(P~)/(P”~“)]“~(N~/P~) > 4; see Fig. 3 of [9]). Thus it 
would be expected that the shear approximation would 

be reasonable for most engineering applications in- 
volving high condensation rates. 

The governing equations (6)-(7) combined with the 
boundary conditions (12)-(14) and (20)-(22) suffice to 
provide solutions as function of three physical par- 
ameters Nr, N2, and Pr. Once the governing equations 

(27) 

Dimensionless melting rate 

(28) 

Dimensionless skin friction 

$ (Re,)‘!’ = F”(0) 
r 

where Re, = xu,/v and T, = ,LL(du/dy),=O. The average 
condensation and melting rates over a distance x are 
equal to twice the corresponding local values at x. 

Method of solution 
A trial-and-error marching integration technique 

was employed. Numerical integration was performed 
using a library program available at the Applied 
Mathematics Division of Argonne National Labora- 

tory (based on the Gear method [12]). For a given 
Prandtl number, the solution procedure was as follows. 
First, solve the momentum equation (6) with assumed 
values for F(0) and F”(0) and determine those solutions 
which satisfy the shear stress condition at na, equation 
(20) (na need not be specified, however). Second, solve 
theenergyequation (7) with these momentum solutions 
and compute N2 and N1 using equations (14) and (22), 
respectively. Third, select those solutions which give 
desired values of N1 and N2 within an error bound 
of 276. 

Thin-jlm approximation 
Before we discuss the numerical solutions, it seems 

useful to consider the case when the inertia forces and 

energy convection effects may be neglected. In this case, 
solution of the momentum and energy equations gives 
linear velocity and temperature profiles in the liquid 
film. The appropriate film thickness and coefficients 
are determined using the boundary conditions (12)-( 14) 
and (20)-(22). It can then be shown that the local 
condensation rate, melting rate, and skin friction are 

given as follows. 

Dimensionless condensation rate 

Dimensionless melting rate 

Dimensionless skin friction 



26 D. H. CHO and M. EPSTEIN 

The dimensionless heat flux at the melting wall is 
given by 

It is easy to see that in the absence of melting (N2 = 0), 

equation (33) reduces to Shekriladze and Gomelauri’s 
solution for pure condensation (equation (8) of [8]) 
and checks with Cess’s limiting solution for 

[(pp)/(p,p,,)]1!2(N,/Pr) >> 1 when Nr << 1 (equation (27) 

of [91). 
Another thin-film approximation is also possible, 

although its practical usefulness is limited. Cess’s 

analysis [9] indicates that the interfacial shear may be 
approximated by the dry friction, i.e. friction over a 
solid surface without condensation, when 

is of the order of 0.1 or less. In this case, the dimen- 
sionless skin friction is given by F”(0) = F”(Q) = 0.332 
[(pV~J(pp)]1’2. Using this shear condition along with 
the boundary conditions (12))(14) and (21))(22), it can 

be shown that the dimensionless heat flux is given by 

O’(O) = O’(%) 

where ~1 = 0.166 [(p,,~~)/(pp)]r!~. In the absence of 
melting (Nz = 0), equation (34) reduces to Cess’s hmit- 

ing solution for [(pp)/(pl.p,)]“2(Nl/Pr) << 1 (equation 
(26) of [9]). Using equation (34), the local condensation 
and melting rate may be obtained from equations (27) 

and (28). 
It may be noted that the thin-film approximation 

can be easily extended to derive simple analytical 
solutions for the case where the condensing vapor and 
the melting solid are of different materials of immiscible 

liquids [ 131. 

3. RESULTS AND DISCUSSION 

To examine the accuracy of the shear approximation 
used in the present study, calculations have been per- 
formed for the case of no melting (N2 = 0). Figure 2 
compares the results with Koh’s exact solutions [7]* 
for [(p~)i(p,,~~,,)]‘.‘* = 500,t which are indicated by 
broken curves. The dimensionless wall heat flux, o’(O), 

is plotted against the condensation parameter Nr. As 
would be expected from the criterion given by (26), 
our solutions are very close to Koh’s solutions for 
N,/Pr = c(7;.-T,,)/(PrI+.) > 0.01. For Pr = 1 and 10, 

*Figure 7(b) of [7] appears to contain some mislabeling. 
The curves for [(p~)/(pU~v)]l’z = 100 should have been for 

[(W)/(P VPJI I’* = 500 and vice versa. 
tAs has been noted by Sparrow et al. [ 141. realistic values 

of the parameter [(p~)/(p,~J]” range from 200 to 2000 for 
typical condensation processes at atmospheric pressure. 
Obviously, the shear approximation given by equation (16) 
becomes more accurate as the value of this parameter in- 
creases. In fact, it is exact when the parameter is infinitely 
large. 

01’ , , 
0.001 0.01 0.1 IO 

CIT,-Tmp) 

LY 

FIG. 2. Heat flux at the wall in the absence of melting; the 
present solutions (solid curves) are compared with Koh’s 

exact solutions for [(p~)/(~~~~.)]“’ = 500 (broken curves). 

however, our solutions tend to deviate somewhat from 
Koh’s solutions as NJPr becomes large. This deviation 

for high Prandtl numbers is not understood. For 
Pr = 0.03, it is not possible to distinguish our solutions 
from Koh’s solutions as given in Fig. 7(a) of [7]. 
Therefore, it would appear that unless the Prandtl 
number is very large, the shear approximation given 
by equation (16) is reasonable for many realistic values 
of the condensation parameter. 

The calculational results for simultaneous conden- 
sation and melting are presented in Figs. 3-l 1. 
Figures 3-5 show the local condensation rate as a 
function of the condensation parameter Nr with the 

melting parameter N2 as parameter for Pr = 0.1, 1, 

1.0 

CITv-Tmpl 

LV 

FIG. 3. Local condensation rates for Pr = 0.1 (brohen 
curves indicate the thin-film approximationl. 
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CITY-Tmpl 

LY 

FIG. 4. Local condensarion rates for Pr = 1.0 (broken 
curves indicate the thin-film approximation). 

C(Tv-Tmpl 

LY 
FIG. 5. Local condensation rates for Pr = 10 (broken 

curves indicate the thin-film approximation). 

and IO. Similarly. the local meking rates are given in 
Figs. 6-8 and the skin friction in Figs. 9-11. Also 
shown for comparison purposes are solutions based on 
the thin-film approximation corresponding to equa- 
tions (30)-(32). The thin-film solutions are indicated by 
broken curves. 

Turning first to Figs. 3-5, we find that the conden- 
sation rates decrease as the meking parameter IVZ 
increases. This would be expected, since melting in- 
creases the liquid fiIm thickness, thereby reducing the 

FIG. 6. Locat melting rates for Pr = 0.1 (broken 
curves indicate the thin-film a~proximationt. 

FIG. 7. Local melting rates for Pr = I.0 1 broken 
curves indicate the thin-film a~proxjrna~~o~l 

temperature driving force For condensation. For a given 
melting parameter, the condensation rates increase with 
increasing condensation parameter Nr. This trend is 
not different from that for condensation without melt- 
ing and requires no further explanations. For Pr = O.f, 
the thin-fiIm approximation appears to be reasonably 
good in estimating the condensation rates for a wide 
range of the melting parameter. For high Prandtl 
numbers, the effect of Nz on the condensation rates 
appears to be somewhat reduced, and the thin-film 
approximation nnderestjmat~ the ~ndensation rates 
when the melting parameter is large. Tkis ~ekav~or 
seems to be related to the blowing effect produced by 
melting. When viewed from our coordinate system, 
mefting produces a normal velocity at the melting 
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FIG. 8. Local melting rates for Pr = 10 (broken 
curves indicate the thin-film approximation). 

001 0.1 1.0 

CiT,-Tmgl 

LV 

CITv-Tmvl 

LU 

FIG. 9. Local skin friction for Pr = 0.1 (broken F~ti. 11. Local skin friction for PI = 10 (broken 

curves indicate the thin-film approximation). curves indicate the thin-film approximation). 

surface. The melting velocity acts to reduce the steep- 
ness of the temperature gradient at the melting surface 
in a way similar to the blowing process in a boundary- 
layer flow [15,16]. As a result, the melting rates will be 
reduced below the thin-film prediction, as will be seen 
later. It appears, however, that for Pr = 1 and 10, the 
blowing velocity increases the steepness of the tem- 
perature gradient at the condensing surface, thereby 
providing a larger driving force for condensation than 

C( T,-T,npl 

LV 

FIG. 10. Local skin friction for Pr = 1.0 (broken 
curves indicate the thin-film approximation). 

predicted by the thin-film approximation. For Pr = 0.1, 
inertia effects are also very important, and it may thus 
be fortuitous that the thin-film approximation predicts 
the condensation rates reasonably well. 

We now turn to the melting rates as shown in Figs. 
6-8. Unless the melting parameter N2 is very small, 
the melting rates generally increase with increasing 
condensation parameter N1. This behavior differs from 
that observed for gravity-flow condensation and melt- 
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ing [6]. This is related to two competing effects. For 
a given NZ, increasing Mi tends to increase the fiim 
thickness because of the increased condensation rates. 
On the other hand, the liquid film moves faster, since 
the shear force at the liquid-vapor interface increases 
with increasing condensation rate and thus its thickness 
tends to decrease When Nz is much greater than Ni, 
the latter effect is large enough to dominate. For 
Nz << N,, the former effect is more important and the 
melting rates may be estimated using heat-flux values 
for the case of no melting. It is seen that for Nz = 1 
and 10, the thin-film approximation overestimates the 
melting rates, the deviation increasing with increasing 
melting parameter. For Pr = 1 and 10, the deviation 
is due mainly to the blowing effect at the melting 
surface. However, the especially marked deviation for 
Pr = 0.1 is related to the inertia of the melt layer as 
well as the blowing effect. The inertia causes the melt 
layer to become thicker than predicted by the thin-film 
approximation* and, coupled with the blowing effect, 
greatly reduces the temperature gradient at the melting 
surface. In fact, the inertia effects for Pr = 0.1 are so 
strong that the melting rates are seen to decrease 
slightly as N2 is increased from 1 to 10. This somewhat 
unexpected behavior would only be of academic 
interest, because, as will be discussed later, the appli- 
cability of the present laminar anafysis is very limited 
for this parameter range. 

of the present results. To do this, the film Reynolds 
number has been derived based on the thin-~irn 
approximation. It is given by 

Figures 9-11 show the dimensionless skin friction 
at the melting surface, F”(O), as a function of Ni with 
N2 as parameter. It is seen that the skin friction 
increases with increasing condensation parameter Ni. 
This is expected, since the shear force that moves the 
liquid film increases with increasing condensation rate. 
The skin friction is found to decrease with increasing 
melting parameter Nz. As has been observed in Figs. 
7 and 8, for Pr = 1 and 10, the melting velocity increases 
with increasing melting parameter. Thus, the effect of 
increasing NZ on the skin friction is similar to the effect 
of blowing in a forced-convection, boundary-layer flow 
[15]. However, the dramatic decrease in skin friction 
for Pr = 0.1 largely represents the strong inertia effects 
of the melt layer. (The results for Nz = 10, which lie 
outside the range of scale of Fig. 9;would be of little 
practicat interest.) 

It should be noted that since L, > L,+c,(T,,- To) 
for most materials, the foregoing analytical results for 
parameter values Ni > Nl are of little practical sig- 
nificance. More important, the results are valid only 
when the film is moving in laminar flow with straight 
streamlines. The nature of the flow changes with the 
film Reynolds number, which is defined by ReJ = 
46(u)p/p where (24) is the average film velocity. For 
water condensing on a vertical surface, waves appear 
at Res of about 30, and a transition to turbulent flow 
occurs at Re, between 300 and 2000 [lo]. Using these 
values of Ref, we shall examine the region of validity 

*Similar inertia effects occur in the melting of solid bodies 
immersed in hot fluid flows when the Prandtl number is 
low [17]. 

Vol. 20. No. 1 -C 

Re, = 4tRe.J 1:2(~>(l+~>‘iz(~+~~‘z. 
(35) 

Consider, for example, saturated steam at atmospheric 
pressure condensing on ice at its melting point. Using 
N1 = 0.185, Nz = 1.25, and Pr = 7.0, it is found that 
Ref = 0.29(Re,)1’Z. Thus, surface waves will appear on 
the film when Re, = 1.1 x IO4 and the flow becomes 
turbulent when Re, = 1.1 x lo6 N 4.8 x 10’. For u, = 
lOm/s (-3Oft/s), surface waves will appear at x = 
1.2 mm and the transition to turbulent flow will occur 
at x = 0.12-4.8 m. When values of NlJPr and/or 
N2/Pr are greater than unity, the applicability of the 
present laminar analysis is quite limited. For the 
melting attack of steel structure by steel vapor (which 
may occur in a core disruptive accident of l~quid-metal- 
cooled fast-breeder reactors), typical values of Ni/Pr 
and N2/Pr are 1 and 10; respectively. In this case, the 
transition to turbulent flow occurs when Re, = lo3 - 
4.5 x 104, the corresponding value of x for u, = lOm/s 
being somewhere between 0.1 and 4Smm. These 
values of x would be an underestimate, since the thin- 
film approximation on which equation (35) is based 
overestimates the melting rate for this case. The above 
calculation, however,clearly indicates the limited appli- 
cability of the present analysis when values of N1/Pr 
and/or NzJPr exceed unity. Strictly speaking, the 
present analysis is considered to be valid when the 
flow is laminar and no surface waves are present. The 
presence of surface waves will cause an increase in 
heat transfer. The present analytical results provide a 
basis for the empirical correlation of the effects of 
surface waves. In the absence of reliable analyses of 
turbulence effects, the present results can even prove 
to be useful in correlating heat-transfer data for tur- 
bulent films. Unfortunately, no experimental data is 
available for comparison with the present analytical 
results. However, it may be mentioned in passing that 
the melting heat-transfer coefficients which were 
measured in experiments involving gravity-flow steam 
condensation on a vertical ice plate in the presence of 
air [5] and a melting ice sphere in a warm laminar 
liquid flow [lS], were found to he in good agreement 
with theoretical predictions based on boundary-layer 
analyses similar to the present analysis. 

Acknowledgemenrs--It is a pleasure to acknowledge Mr. F. 
Pellett for his assistance in the programming and com- 
putational stages of this research. 

This work was performed under the auspices of the U.S. 
Energy Research and Development Administration. 

REFERENCES 

1. P. A. Weiss, Desalination by freezing, in Practice of 
De~~~j~u~io~ (edited by R. Bakish), pp. 260-270. Noyes 
Data Corp., New Jersey (1973). 

2. S. M. Hodge, Instruments and methods; a new version 
of a steam-operated ice drill, J. Chid. 10(60), 387,-393 
(1971). 



30 D. H. CHC) and M. EPSTEIN 

3. M. Epstein and D. H. Cho. Melting rates for the attack 

4. 

5. 

6. 

1. 

8. 

9. 

10. 

II. 

of steel structure by UO2 fuel or steel vapor, Trclns. 
Ant. Ri‘ucl. Sac. 21, 31 1 (1975). 
C. Tien and Y. C. Yen, Condensation-melting heat 12. 
transfer, Chem. Engng Pro<jr. Srmp. Ser. No. 113 67. 1 9 
(1971). 
Y. C. Yen. A. Zehnder, S. Zavoluk and C. Tien, Con- 13. 
densation-melting heat transfer in the presence of air, 
Chem. Enyng Progr. Symp. Ser. No. 13169,23-29 (1973). 
M. Epstein and D. H. Cho, Laminar film condensation 14. 
on a vertical melting surface, J. Heat Transfer 98C, 
10% 113 (1976). 
J. C. Y. Koh, Film condensation in a forced-convection 
boundary-layer flow, Inf. d. Npuf Mus.c Tram+ 5. 15. 
941-954 (1962). 
I. G. Shekriladze and V. I. Gomelauri, Theoretical 
study of laminar film condensation of flowing vapor, lb. 
irrt. f. Heat Mass Transjer 9, 581.-591 (1966). 
R. D. Cess, Laminar-film condensation on a flat plate 
in the absence of a body force. Z. Angew. Murk Phys. 17. 
II, 426-433 (1960). 
V. E. Denny and A. F. Mills, Nonsimilar solutions for 
laminar film condensation on a vertical surface, Illr. J. IX. 
Heut Muss Trun$kr 12,965-979 (1969). 
H. Honda and T. Fujii, Effect of the direction of 
oncoming vapor on laminar filmwise condensation on 

CONDENSATION LAMINAIRE EN FILM D’UNE VAPEUR S’ECOULANT 

a horizontal cylinder, in Proceedings of the Fifth Intrr- 
~zut~~~n{ll Heat Trunsfer ~o~fereFtce, Tokyo, Japan, Vol. 
III, pp. 299-303. A.I.Ch.E., New York (1974). 
C. W. Gear, The numerical integration of ordinary 
differential equations of various orders, Argonne 
National Laboratory Report, ANL-7126 (1966). 
D. H, Cho and M. Epstein, Melting of steel structure 
by flowing fuel or steel vapor. 7’&ts. Am. Nucl. Sot. 
22.386-387 (1975). 
E. M. Sparrow. W. J. Minkowycz and M. Saddy, Forced 
convection condensation in the presence ofnoncondens- 
ables and interfacial resistance, Int. J. Heat Mass 
Trunsjkr 10. 1829 1845 ( 1967). 
J. P. Hartnett and E. R. G. Eckcrt, Mass-transfer cooling 
in a laminar boundary layer with constant fluid proper- 
ties, Trans. Attt. Sm. Mech. I%ars 79. 247.-254 (19571. 
Y. C. Yen and C. Tien. Lamcnar heat transfer o&r a 
melting plate, the modified Leveque problem, J. 
Grophqs. Rex 68( 12), 3673. 3678 (196j). 
M. Epstein and D. H. Cho. Melting heat transfer in 
stead; laminar flow over a flat plate. J. Heat Trunsfer 
98C, 531-533 (1976). 
F. M. Pozvonkov, E. F. Shurgalskii and L. S. Akselrod. 
Heat transfer at a melting Bat surface under conditions 
of forced convection and laminar boundary layer, Int. 
J. Heat Mus.s Trm.$~r 13, 957 -962 (1970). 

SUR UNE SURFACE HORIZONTALE EN FUSION 

R&sum&-On Ctudie par voie analytique la condensation laminaire en film d’une vapeur satur& balayant 
une surface horizontale en fusion. Les equations de conservation formulees en similitude ont ttC rtsolues 
numeriquement en utilisant un traitement approchi: de la tension de cisaillement de l’interface liquide- 
vapeur (mithode sugg&e par Shekriladze et Gomelauri). Le taux de condensation. les taux de fusion et 
le frottement paribtal ont &tO obtenus pour trois valeurs du nombre de Prandtl du liquide (O,l- 1 et 10) 
et pour un domaine &endu de paramitres de condensation et de fusion (nombres de Stefan). Les solutions 
sont exactes lorsque le paramPtre [(pp)/(p,~~)]“” tend vers l’infini. Des solutions analytiques simples 

basttes sur ~approximation du film mince ont bgalement &i obtenues et comparhs aux resultats 

numeriques. 

LAMINARE FILMKONDENSATION STRiiMENDEN DAMPFES AUF 
EINER HORIZONTALEN SCHMELZENDEN 0BERFL;iCHE 

Zu~mmenfassung~Die Iaminare Filmkondensation eines iiber eine horizontale schmelzende Oberflgche 
striimenden, gesiittigten Dampfes wird analytisch untersucht. Unter Verwendung eines Naherungsansatzes 
fiir die Schubspannung an der Dampf-Fliissigkeits-Grenzfliche (entsprechend dem Vorschlag von 
Shekriladze und Gomelauri) werden die Erhaltungsgleichungen numerisch gelijst. Fiir drei Werte der 
Fliissigkeits-Prandtl-Zahl (OJ; 1 und 10) und fiir einen weiten Rereich van Kondensations- und 
Schmelzparametern (Stefan-Zahlen) werden L6sungen fiir die Kondcnsations- und Schmelzrate sowie 
fiir die Oberfl~chenre~bung angegeben. Die Lijsungen werden exakt. wenn Parameter ((~~I)~(~“~~)]“~ 
gegen unendli~h geht. AuBerdem werden einfache analytische, auf einer D~nns~hicht-N~herun~ beruhende 

LGsungen abgeleitet und mit den numerischen Werten verglichen. 

J’IAMMHAPHAR IlJlEHOqHAR KOHAEHCAUMR nAPA, TEKYIJJEI-0 
n0 JOP~3OHTA~bHO~ IIOBEPXHOCTM ilJIABflEHMR 

~o~UH~ - AHa,~~T~YecK~ ~CCJieiQ’eTC54 ~a~~HapHaff RJieHOYHart KOHAeHCau~~ HaCbi~eHHOrO 
napa, TeKyluerO n0 rOpPi30HTaJlbHOE nOBepXHOC_Fu nltaBJleHI1R. c IIoMOWbK) np&&Wi1KeHHOrO npea- 

cTaBnewiR HanpnmemiB cnmfra Ha nosepxHocru pasaena nap-XtiaKocrb (npenno~ewol UIeKprr- 

nan3e H roMenaypa) pemancrcb wcnewo aaToMonenbHble ypaaHeelrrt coxpaHetn4fl. PemeHwR nnlr 
CKOpOCTM KOHL(CHCaLlHM, WlaBJIeHWi H IlOBepXHOCTHOr0 TpeHHR nOJly’ieHbl DlSl TpeX 3HaqeHciti WiCfSl 

npaegl-nn fl.rr~ ~KAL[KOCTII (0,l; 1 R IO) R uwfpo~oro nllanasoea napaMeTpoa KofineHcaumi II nnaBne- 

HUB (racna CTe+aHa). PeureHAa cTaHoaaTcff ToqiibiMM, K0rfi.a napaMeTp [(~~)/(~‘~~“)]i’z, cTpeMtlfcrt 

K 6eCKOHe~HOCT~. c nOMOlHbKf r~p~6~~~eH~fl TOHKOti n_SeHKM t7OJlyYeHbi npOCTble aHa,l~T~qe~K~e 

PeWeHHR, KOTOpbFe CpaBHliBaKSDi C Y~CneHHbIM~ pe3yJlbTaTaMH. 


